Бильярд Буркозел Домино

Титановая руда - нахождение и фарм. Перспективы освоения титанового сырья в россии Где добывают титановую руду

Во многих ММОРПГ существуют особые артефакты, которые нужно собирать геймерам, выполняя квесты, убивая злых монстров, или просто отправляя своего героя на исследование какой-либо территории. Они нужны для улучшения вооружения, для того, чтобы быстрее одержать победу над врагом и еще для множества целей - в общем, для игры и прокачки своего героя.

Но нужны не только артефакты, а и те материалы, из которых их можно создать, используя магию или какую-либо профессию. В некоторых стратегиях приходится необходимые для создания некоторых вещей, в том числе редких. Есть материалы настолько ценные, что их могут выставлять на продажу даже не только за виртуальную, «местную» валюту, принятую в игре, а и за вполне реальные деньги в их электронном варианте. В ряде игр существуют виды ископаемых, которые весьма полезны, и добыть их непросто. Например, титановая руда в ВоВ. Это ископаемое стоит поискать, поскольку цена его в местных игровых магазинах совсем не маленькая и составляет до 300 золотых за одну единицу. Кстати, не только в WoW титановая руда столь дорога, а и в ряде похожих стратегий. Она жизненно важна для тех игроков, которые решили прокачать некоторые профессии - например, ювелира, кузнеца и другие.

У многих геймеров, решивших освоить горную или кузнечную профессию в ВоВ, возникает вопрос о том, где находится титановая руда? Надо сказать, это волнует даже многих опытных игроков. Ведь этот материал - весьма ценный и довольно редко встречается. Порой даже в тех местах, где она, казалось бы, определенно должна быть, ее не могут найти или находят с большим трудом.

Титановая руда - это особый вид ископаемых, который необходим для того, чтобы изготовить артефакты эпического качества или особый вид металла - титановую сталь. Кроме того, из его жил можно изготовить различные кристаллизированные элементы, в том числе и драгоценные камни, шанс дропа которых высок. Однако сам титан - это добыча куда более ценная, чем перечисленные ниже «побрякушки», ведь его виртуальная стоимость очень высока, поскольку намного дороже, чем любой минерал, руда титана. Из него создают особую сталь алхимики либо кузнецы, причем не чаще, чем один раз за двадцать часов. Чтоб изготовить этот металл, понадобится три слитка из титана, а также по куску таких материалов, как Извечный Огонь, Тьма и Земля. Стоимость такой стали также очень велика.

Где находится титановая руда? Нередко ее стоит искать там, где есть большие залежи саронитовой руды - таким образом, если вы их где-либо обнаружили, смело ищите в этих местах титановую. Эту закономерность давно обнаружили геймеры, сопоставляя месторождения различных ископаемых, и многие любители WoW о ней в курсе.

Также некоторые игровые зоны известны залежами такой руды - это Озеро ледяных оков, Низина Шолазар, Нордскол и Ледяная корона, а также в некоторых других. Не стоит думать, что в одних виртуальных просторах ВоВ можно очень легко найти этот материал, а в других его не отыщешь. Он есть практически везде, но раскидан далеко не в равных количествах. И не факт, что найдя однажды его в каком-либо месте, в следующий раз вы его отыщете там же.

Также стоит учесть один нехитрый секрет - ночью и рано утром мало кто (по крайней мере, в вашем часовом поясе) занимается поисками ископаемых. Если срочно нужна титановая руда, можно поискать в это время. А если вы собираетесь покупать ее, то примите во внимание тот факт, что в день выхода нового патча цены на нее существенно снижаются.

Стоит поискать карты местностей с указаниями тропинок, ведущих к таким залежам - на форумах, посвященных этой тематике, и других сайтах. Над такими территориями, как ОЛО, и Грозовая гряда, титановую руду можно найти простым полетом.

Хочется пожелать всем игрокам ВоВ удачи в разработке залежей, фарме и вообще в игре.

Титановые рынки

Региональные рынки конечного применения титана весьма различаются - наиболее ярким примером своеобразия является Япония, где на гражданский авиакосмический сектор приходится всего 2-3% при использовании 30% от общего потребления титана в оборудовании и конструкционных элементах химических заводов. Примерно 20% от общего спроса в Японии приходится на атомнуюэнергетику и на электростанции на твёрдом топливе, остальная доля приходится на архитектуру, медицину и спорт. Противоположная картина наблюдается в США и Европе, где исключительно большое значение имеет потребление в аэрокосмическом секторе - 60-75% и 50-60% для каждого региона соответственно. В США традиционно сильными конечными рынками являются химическая промышленность, медицинское оборудование, промышленное оборудование, в то время как в Европе наибольшая доля приходится на нефтегазовую промышленность и строительную промышленность.Сильная зависимость от аэрокосмической отрасли была давним предметом беспокойства титановой промышленности, которая пытается расширить области применения титана, что особенно актуально в условиях текущего спада в гражданской авиации в мировом масштабе.По данным Геологической службы США в первом квартале 2003 года произошёл значительный спад импорта титановой губки - всего лишь 1319 тонн, что на 62% меньше 3431 тонн за аналогичный период 2002 года.

Российский производитель титана ВСМПО-АВИСМА

1 июля1933 года в Подмосковье был пущен завод № 45. С этого дня начинается отсчет истории Верхнесалдинского металлургического производственного объединения (ВСМПО). Предприятие должно было стать основным поставщиком полуфабрикатов из алюминия и его сплавов для зарождавшегося советского самолетостроения. Это была главная задача. Но кроме этого заводу отводилась роль научной базы, где разрабатывались новые сплавы. Например, для изготовления силовых элементов скоростного бомбардировщика АНТ-40 был создан сплав повышенной прочности М-95. А в 1935 году освоены ковкие алюминиевые сплавы АК 5 и АК 6.

Великая Отечественная война резко нарушила привычный ритм работы. В октябре 1941 года Государственный комитет обороны СССР постановил полностью эвакуировать завод в Свердловскую область, в город Верхняя Салда. В тех же цехах бывшей верхнесалдинской «Стальконструкции» разместился завод № 519 Наркомата цветной металлургии, оборудование которого прибыло из Кольчугино и с двух ленинградских предприятий. Новаторские традиции подмосковных алюминщиков были перенесены на уральскую землю. Уже в декабре 1941-го, буквально полтора месяца спустя после постановления об эвакуации, завод выдал первую продукцию на новом месте.

Весной 1942 года производство алюминиевых деталей уже вышло на довоенный уровень, а в 1943 году проектная мощность предприятия была перекрыта в 6 раз! Потребности советского авиастроения были удовлетворены полностью. Помимо этого производимые в Верхней Салде полуфабрикаты широко использовались в судо- и танкостроении, производстве боеприпасов и вооружения.

Стремительное развитие передовых технологий в послевоенный период потребовало применения новых материалов. Решением Совета министров СССР от 21 июня 1956 года заводу была поставлена историческая задача: начать крупносерийное производство слитков и полуфабрикатов из титановых сплавов. В феврале 1957 года из заводских печей вышел первый титановый слиток диаметром 100 мм и весом 4 кг. Этот небольшой металлический цилиндр стал первой ступенькой к восхождению будущего ВСМПО-АВИСМА на мировой титановый Олимп. Мы стали вторыми в мире, сумевшими начать производство «космического металла». США опередили нас на 9 лет. Но с этого исторического момента начала отсчет новая эра производства ВСМПО - титановая.

Генеральный директор корпорации ВСМПО-АВИСМА Владислав Тетюхин, участник первой титановой плавки на заводе, отмечает: «Говоря о начале промышленного освоения производства титана, мы отдаем дань уважения и признательности первопроходцам и основателям высокотехнологичной отрасли нашей страны, которая сегодня позволяет вести на равных диалог с руководителями самых представительных фирм и компаний в области мирового самолетостроения. Более того, они протягивают нам руку сотрудничества и готовы к совместному продвижению вперед самых грандиозных проектов».

В маленьком уральском городке Верхняя Салда должно было производиться порядка 80% всего титанового проката Советского Союза. Такое решение приняло Министерство авиапромышленности СССР. Предприятие стало одним из крупнейших в мире производителей слитков и большинства видов проката из титановых сплавов. Все авиакосмические проекты в нашей стране проходили с его участием. До 75% титановой продукции и до 95% изделий из алюминиевых сплавов направлялись для авиационно-космического комплекса и оборонных отраслей промышленности.

Объединение в содружестве со специалистами ВИЛСа, ВИАМа, с КБ самолетостроительных и двигателестроительных заводов создавало изделия для критических узлов всех отечественных авиадвигателей, а также для планеров и шасси самолетов и вертолетов: ИЛ-76, ИЛ-86, ИЛ-114, Ту-204, Ту-160, АН-124 («Руслан»), АН-225 («Мрия»), АН-22 («Антей»), Су-27, МиГ-29, Ми-26, ИЛ-96-300, АН-70, МиГ-31 и других. ВСМПО участвовало в научно-технических разработках стыковочного узла космического комплекса «Союз-Аполлон», в корабле многоразового использования «Буран», в ракетоносителе «Энергия».

В 1982 году предприятие стало называться ВСМПО - Верхнесалдинское металлургическое производственное объединение. Продолжает развиваться титановое производство, поставившее в конце восьмидесятых абсолютный мировой рекорд ежегодного производства слитков - свыше 100 тыс. тонн.

ВСМПО производит изделия и детали для авиаракетостроения и для оборонной промышленности, это предприятие использует титановую губку высокого качества и к продукции ОАО «АВИСМА» предъявляет соответствующие требования. Однако на мировом рынке «продвинутого» титанового передела продукция ВСМПО пока практически неконкурентоспособна, так что объединению, по сути, приходится ограничиваться поставками полуфабрикатов. Металлургические же предприятия используют в своём производстве губчатый титан низших марок. Отношения «Ависмы» и ВСМПО осложняются желанием верхнесалдинцев, как основных владельцев березниковского предприятия, покупать губку по фиксированнму курсу доллара, на много меньше установленного ЦБ РФ.

В США самыми крупными потребителями российской губки являются компании RMI Titanium, которая в недавнем прошлом оставила своё производство губчатого титана из-за экологической вредности производства, Axel Johnson, Wyman-Gordon, Titanium Heart Technologies. Американские потребители титановой губки составляют 30% от мировых потребителей губчатого титана. Если в 1996 году мировой лидер самолётостроения, американская компания Boeing, выпустила 220 самолётов, то в 1997 году - 340, а в 1998 году планирует довести производство до 43 лайнеров в месяц. Причём, если на самолёте Boeing 747 масса деталей и узлов из титановых сплавов составляет около 4,5 тонны, то на новейшей 777-й модели, по некоторым оценкам, от 40 до 45 тонн! Предполагается, что потребности в титане одной только корпорации Boeing в 1998 году достигнут 12 тыс. тонн. Растет потребление титана и в такой экзотической сфере применения, как изготовление клюшек для гольфа. В 1996 году на долю гольф-клубов приходилось 11% общего объёма потребления металлического титана в США.

C текущей ситуацией и прогнозом развития российского рынка диоксида титана можно познакомиться в отчете Академии Конъюнктуры Промышленных Рынков

Титан — лёгкий прочный металл серебристо-белого цвета. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмно-центрированной упаковкой, температура полиморфного превращения α↔β 883 °C.Титан и титановые сплавы сочетают легкость, прочность, высокую коррозийную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.

Смотрите так же:

СТРУКТУРА

Титан имеет две аллотропические модификации. Низкотемпературная модификация, существующая до 882 °C, имеет гексагональную плотноупакованную решетку с периодами а = 0,296 нм и с = 0,472 нм. Высокотемпературная модификация имеет решетку объемноцентрированного куба с периодом а = 0,332 нм.
Полиморфное превращение (882 °C) при медленном охлаждении происходит по нормальному механизму с образованием равноосных зерен, а при быстром охлаждении — по мартенситному механизму с образованием игольчатой структуры.
Титан обладает высокой коррозионной и химической стойкостью благодаря защитной окисной пленке на его поверхности. Он не корродирует в пресной и морской воде, минеральных кислотах, царской водке и др.

СВОЙСТВА

Точка плавления 1671 °C, точка кипения 3260 °C, плотность α-Ti и β-Ti соответственно равна 4,505 (20 °C) и 4,32 (900 °C) г/см³, атомная плотность 5,71×1022 ат/см³. Пластичен, сваривается в инертной атмосфере.
Применяемый в промышленности технический титан содержит примеси кислорода, азота, железа, кремния и углерода, повышающие его прочность, снижающие пластичность и влияющие на температуру полиморфного превращения, которое происходит в интервале 865-920 °С. Для технического Титана марок ВТ1-00 и ВТ1-0 плотность около 4,32 г/см 3 , предел прочности 300-550 Мн/м 2 (30-55кгс/мм 2), относительное удлинение не ниже 25%, твердость по Бринеллю 1150-1650 Мн/м 2 (115-165 кгс/мм 2). Является парамагнетиком. Конфигурация внешней электронной оболочки атома Ti 3d24s2.

Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.

При обычной температуре покрывается защитной пассивирующей пленкой оксида TiO 2 , благодаря этому коррозионностоек в большинстве сред (кроме щелочной). Титановая пыль имеет свойство взрываться. Температура вспышки 400 °C.

ЗАПАСЫ И ДОБЫЧА

Основные руды: ильменит (FeTiO 3), рутил (TiO 2), титанит (CaTiSiO 5).

На 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO 2 . Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтвержденные запасы диоксида титана (без России) составляют около 800 млн т. На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603-673 млн т., а рутиловых - 49.7-52.7 млн т. Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта России) хватит более чем на 150 лет.

Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки - порошок диоксида титана TiO 2 . Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана их при 850 °C восстанавливают магнием.

Полученную титановую «губку» переплавляют и очищают. Ильменитовые концентраты восстанавливают в электродуговых печах с последующим хлорированием возникающих титановых шлаков.

ПРОИСХОЖДЕНИЕ

Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре - 0,57 % по массе, в морской воде - 0,001 мг/л. В ультраосновных породах 300 г/т, в основных - 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т. В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al 2 O 3 . Он концентрируется в бокситах коры выветривания и в морских глинистых осадках.
Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов. До 30 % TiO 2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан. Важнейшие из них: рутил TiO 2 , ильменит FeTiO 3 , титаномагнетит FeTiO 3 + Fe3O 4 , перовскит CaTiO 3 , титанит CaTiSiO 5 . Различают коренные руды титана - ильменит-титаномагнетитовые и россыпные - рутил-ильменит-цирконовые.
Месторождения титана находятся на территории ЮАР, России, Украины, Китая, Японии, Австралии, Индии, Цейлона, Бразилии, Южной Кореи, Казахстана. В странах СНГ ведущее место по разведанным запасам титановых руд занимает РФ (58.5%) и Украина (40.2%).

ПРИМЕНЕНИЕ

Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Титан легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из титановых сплавов изготовляют обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессора, детали воздухозаборника и направляющего аппарата, крепеж.

Также титан и его сплавы используют в ракетостроении. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.

Технический титан из-за недостаточно высокой теплопрочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т.п. Только титан обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Из титана делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На титан и его сплавы не налипают ракушки, которые резко повышают сопротивление судна при его движении.

Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и дефицитностью титана.

Титан (англ. Titanium) — Ti

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 1/A.06-05
Dana (7-ое издание) 1.1.36.1
Nickel-Strunz (10-ое издание) 1.AB.05

Титан относится к широко используемым в промышленном производстве элементам. Важнейшими видами титановой продукции являются пигментный диоксид титана (мировое производство около 3 млн.т TiO2 в год) и металлический титан (60-70 тыс.т Ti в год). Почти 90% диоксида титана используется в качестве наполнителя резины, бумаги, пластмасс, при матировании искусственного волокна, как усилитель силиконового каучука, в полупроводниковой керамике и т.д. Металлический титан и его сплавы, обладающие высокой коррозионной стойкостью и хорошим сочетанием механических и технологических свойств, применяются в самых различных отраслях промышленности: авиационной, космической, химической, металлургической, в машиностроении, судостроении.

Главными производителями пигментного диоксида титана являются США, Германия, Япония, Англия, Франция (около 70% мирового производства). Металлический титан производится в США, Японии, Великобритании, Казахстане, Украине и Китае.

В странах СНГ ведущее место по разведанным запасам титановых руд занимает РФ (58.5%) и Украина (40.2%). Однако в России в основном находятся неосвоенные месторождения, титановый концентрат из которых не производится. Главным же производителем титанового сырья (ильменита, рутила) в СНГ является Украина. В целом в СНГ известно большое число месторождений титана, которые относятся к различным промышленно-генетическим типам (табл. 1) По условиям образования они делятся на магматические, коры выветривания (остаточные), россыпи и метаморфизованные месторождения. В СНГ ведущую роль в получении титановых концентратов играют древние прибрежно-морские (ильменит, рутил, циркон и др.), а также аллювиальные и аллювиально-делювиальные россыпи ильменита и остаточные его месторождения, сосредоточенные в основном на Украине. Из большого числа титаносодержащих минералов главное промышленное значение имеют ильменит, рутил, лейкоксен, анатаз. Перспективны – перовскит, сфен и титаномагнетит.

В промышленных рудах содержится 0.5-35% TiO2, во вкрапленных рудах магматических месторождений обычно 7-10% TiO2. Россыпи часто характеризуются более низкими содержаниями титана. Однако относительно простое получение титановых концентратов из россыпей делают рентабельной их эксплуатацию. Добытый материал перерабатывается на обогатительных фабриках, где получают самостоятельные концентраты: ильменитовый, рутиловый, цирконовый, ставролитовый и др. Большинство из получаемых титановых концентратов содержат целую группу элементов-примесей (Sc, V, Ta, Nb, TR, Ga и др.), представляющих промышленную ценность. Особую ценность среди них представляет дорогостоящий скандий, который постоянно содержится в ильмените (до 0.02%) и рутиле (до 0.01%). В 1995 г. в США 1 г Sc2O3 (99.9%) стоил 63.2 долл., а 1 г металлического скандия (99.99%) – 125 долл. (по данным коммерческого каталога).

В настоящее время на территории СНГ титановые концентраты из руд коренных месторождений не получают. За рубежом главными производителями ильменитового концентрата из руд коренных месторождений являются Канада и Норвегия. Суммарно они дают около 30% ежегодной мировой титановой продукции.

На территории России все наиболее важные месторождения титана находятся в девяти металлогенических провинциях. Основными титанорудными провинциями России, в которых сосредоточено 81.6% ее запасов и 52.4% ресурсов титана являются: Тиманская (Ягерское и др. месторождения), Оклемо-Становая (Кручининское, Большой Сейим и др.), Уральская (Медведевское, Копанское и др.) (рис.1). Среди указанных провинций особняком стоит Тиманская, характеризующаяся уникальным генетическим типом титановых месторождений, представленных нефтеносными лейкоксеновыми песчаниками. Запасы руд значительные, превышающие на отдельных объектах десятки миллионов тонн. Содержание лейкоксена в них от десятков до нескольких сотен кг/м3 (Ярегское и др.). Содержание TiO2 в песчаниках в среднем 10.5%. Содержание лейкоксена в тяжелой фракции до 80-90%. В качестве важных примесей редких металлов присутствуют ниобий, тантал, цирконий. Получаемый после обогащения концентрат, содержащий 45-55% TiO2, 34-40% SiO2 и 5-35% нефти, после отделения нефти пригоден для производства пигментного диоксида титана.

Другим перспективным для России типом титановых месторождений является магматический (месторождения Коларского, Джугджурского, Баладекского анортозитовых массивов). Интерес может представить месторождение Большой Сейим (Амурская обл.), титаномагнетит-ильменитовые руды которого содержат 5-15% TiO2. Из них получен кондиционный ильменитовый концентрат (46% TiO2), магнетитовый (63% Feобщ., 0.7% V2O5), апатитовый (40% P2O5). Запасы TiO2 на месторождении 23 млн.т. Заслуживают внимания апатит-титаномагнетитовые руды Джугджурского анортозитового массива, где выделяются три главных рудных поля: Богидесское, Гаюмское и Маймаканское. Эти руды содержат: 10-90% апатита, 50-70% титаномагнетита, до 10% ильменита. Концентрация TiO2 в титаномагнетите составляет 5.4-15.5%. Выполнен комплекс технологических работ по получению ильменитового концентрата из руд Медведевского, Копанского и Маткальского месторождений (Урал), из которого принципиально возможно получение титанового шлака, пригодного для производства пигментного TiO2. Эти же месторождения обладают существенными запасами ванадия, получение которого также возможно.

Перспективны в РФ на титан древние морские россыпи, которые расположены на Русской плите (Лукояновское, Центральное), а также некоторые россыпи Сибири (Туганское, Тулунское месторождения). В целом по России возможно заметное расширение минерально-сырьевой базы титана за счет значительных прогнозных его ресурсов, которые превосходят запасы по категориям А+В+С1+С2 примерно в два раза (рис.1).

В качестве существенного потенциального сырья для титана выделяются довольно многочисленные месторождения титаномагнетита (табл. 2). Они приурочены к целому ряду магматических мафит-ультрамафитовых формаций. Встречаются указанные месторождения в европейской части РФ, на Урале, в Сибири. Среднее содержание TiO2 в титаномагнетитовом концентрате некоторых месторождений может достигать 15-20% (Пудожгорское и др.) Кроме того, титаномагнетитовые руды отдельных месторождений уже сейчас являются главным источником получения ванадия в России (Гусевогорское, Первоуральское месторождения). В перспективе из них возможно получение титана, скандия, марганца, галлия. Запасы титаномагнетитовых руд некоторых месторождений могут достигать нескольких миллиардов тонн. Их доля в запасах железа СНГ на 1990 г. составляла 7.7%, а добыча 8.3%. При плавке содержащейся в титаномагнетите титан переходит в шлак, откуда его извлечение возможно. Повышение комплексности использования титаномагнетита для РФ существенно, и содержащийся в нем титан может играть далеко не последнюю роль. Даже относительно невысокие по титанистости титаномагнетиты Гусевогорского месторождения (в среднем 3.3% TiO2) дают доменные шлаки, которые содержат 9.4% TiO2.

Конверторный шлак, остающийся после передела ванадистого чугуна также характеризуется повышенной титанистостью. Возможно, что в будущем окажется целесообразным получение из конверторного шлака не только V2O5, но и диоксида титана, глинозема и марганца.

Перспективно производство титана, а также Al, TR, Nb из шлаков, которые образуются в результате плавки концентратов, полученных из перовскит-титаномагнетитовых руд (месторождение Африканда и др. Кольского п-ва). В этих шлаках содержится, % масс: 39.9-42.2 TiO2; 5.8-6.6 Al2O3; 1.6-2.1 TR2O3; 0.4 Nb2O5. Значительные масштабы перовскит-титаномагнетитовых руд позволяют рассчитывать на широкие возможности их комплексного использования.

Важным направлением в развитии производства титанового сырья является получение искусственного рутила из природных ильменитовых концентратов и титановых шлаков (рис. 2). В настоящее время в мире производится ~830 тыс.т синтетического рутила, богатого по содержанию TiO2 продукта, пригодного для производства пигментного диоксида титана хлорным методом.

Ценность титанового сырья в значительной степени (~50%) еще определяется присутствующими в нем редкими металлами. При хлорном методе переработки титановых концентратов редкие металлы накапливаются в хлоридных возгонах в таких количествах, существующими технологическими методами могут быть в качестве товарной продукции получены трехокись скандия, хромовый концентрат, железооксидные пигменты, соли марганца, коагулянты для очистки сточных вод и др. (рис. 3).

Таким образом, ресурсы титанового сырья в России значительные и в состоянии обеспечить потребности в титане на многие десятилетия. Однако в результате распада СССР Россия осталась как без освоенных месторождений, так и без ведущих перерабатывающих предприятий. Действующий Березниковский титано-магниевый комбинат в настоящее время не в состоянии обеспечить будущее развитие титановой промышленности РФ, потребности которой оцениваются в 300-675 тыс.т TiO2/год (Быховский, Зубков, 1996). Такие крупные месторождения, как Ярегское, Медведевское, Большой Сейим и др. не подготовлены к эксплуатации. При этом существуют значительные сложности и недоработки в технологии получения диоксида титана из их концентратов.

В этой связи развитие собственной титановой промышленности России (помимо наращивания запасов) должно определяться технологией комплексной переработки концентратов крупных титановых месторождений, расположенных в регионах с развитой инфраструктурой. Проблема комплексности решается в случае внедрения хлорной технологии, которая позволяет извлекать из сырья кроме титана, такие ценные металлы, как скандий, ванадий, хром, ниобий и др. и может быть практически безотходной и экологически чистой.

Является одним из важнейших конструкционных материалов, поскольку сочетает прочность, твердость и легкость. Однако другие свойства металла весьма специфичны, что делает процесс получения вещества тяжелым и дорогостоящим. И сегодня нами будет рассмотрена мировая технология производства титана, кратко упомянем и .

Существует металл в двух модификациях.

  • α-Ti – существует до температуры в 883 С, обладает плотной гексагональной решеткой.
  • β-Ti – имеет объемно-центрированную кубическую решетку.

Переход осуществляется с очень небольшим изменением плотности, поскольку последняя при нагревании постепенно уменьшается.

  • Во время эксплуатации титановых изделий в большинстве случаев имеют дело с α-фазой. А вот при плавке и изготовлении сплавов металлурги работают с β-модификацией.
  • Вторая особенность материала – анизотропия. Коэффициент упругости и магнитная восприимчивость вещества зависит от направления, причем разница довольно заметная.
  • Третья черта – зависимость свойств металл от чистоты. Обычный технический титан не годится, например, для использования в ракетостроении, поскольку из-за примесей теряет свою жаростойкость. В этой области промышленности применяют только исключительно чистое вещество.

О составе титана поведает это видео:

Производство титана

Использовать металл начали только в 50-е годы прошлого века. Его добыча и производство являются сложным процессом, благодаря чему этот относительно распространенный элемент относили к условно редким. И далее мы рассмотрим технологию, оборудование цехов по производству титана.

Сырье

Титан занимает 7 место по распространенности в природе. Чаще всего это оксиды, титанаты и титаносиликаты. Максимальное количество вещества содержится в двуокисях – 94–99%.

  • Рутил – самая устойчивая модификация, представляет собой минерал синеватого, буровато-желтого, красного цвета.
  • Анатаз – довольно редкий минерал, при температуре в 800–900 С переходит в рутил.
  • Брукит – кристалл ромбической системы, при 650 С необратимо переходит в рутил с уменьшением объема.
  • Более распространены соединения металла с железом – ильменит (до 52,8% титана). Это гейкилит, пирофанит, кричтон – химический состав ильменита весьма сложен и колеблется в широких переделах.
  • Используется в промышленных целях результат выветривания ильменита – лейкоксен . Здесь происходит довольно сложная химическая реакция, при которой из ильменитовой решетки удаляется часть железа. В результате объем титана в руде повышается – до 60%.
  • Также используют руду, где металл связан не с закисным железом, как в ильмените, а выступает в виде титаната окисного железа – это аризонит, псевдобрукит .

Наибольшее значение имеют месторождения ильменита, рутила и титаномагнетита. Разделяют их на 3 группы:

  • магматические – связаны с участками распространения ультраосновных и основных пород, проще говоря, с распространением магмы. Чаще всего это ильменитовые, титаномагнетитовые ильменит-гематитовые руды;
  • экзогенные месторождения – россыпные и остаточные, аллювиальные, аллювиально-озерные месторождения ильменита и рутила. А также прибрежно-морские россыпи, титановые, анатазовые руды в корах выветривания. Наибольшее значение имеет прибрежно-морские россыпи;
  • метаморфизированные месторождения – песчаники с лейкоксеном, ильменит-магнетитовые руды, сплошные и вкрапленные.

Экзогенные месторождения – остаточные или россыпные, разрабатываются открытым методом. Для этого используют драги и экскаваторы.

Разработка коренных месторождений связана с проходкой шахт. Полученную руду на месте дробят и обогащают. Применяют гравитационное обогащение, флотацию, магнитную сепарацию.

В качестве исходного сырья может использоваться титановый шлак. Он содержит до 85% диоксида металла.

Технология получения

Процесс производства металла из ильменитовых руд состоит из нескольких стадий:

  • восстановительная плавка с целью получения титанового шлака;
  • хлорирование шлака;
  • производства металла восстановлением;
  • рафинирование титана – как правило, проводится с целью улучшения свойств продукта.

Процесс это сложный, многоэтапный и дорогостоящий. В результате достаточно доступный металл оказывается весьма дорогим в производстве.

О производстве титана расскажет данный видеосюжет:

Получение шлака

Ильменит является ассоциацией оксида титана с закисным железом. Поэтому целью первого этапа производства является отделение диоксида от оксидов железа. Для этого оксиды железа восстанавливают.

Процесс осуществляют в электродуговых печах. Ильменитовый концентрат загружают в печь, затем вводят восстановитель – древесный уголь, антрацит, кокс, и прогревают до 1650 С. При этом железо восстанавливается из оксида. Из восстановленного и науглероживающегося железа получают чугун, а оксид титана переходит в шлак. Последний в итоге содержит 82–90% титана.

Чугун и шлак разливают по отдельным изложницам. Чугун используют в металлургическом производстве.

Хлорирование шлака

Целью процесса является получение тетрахлорида металла, для дальнейшего применения. Непосредственно хлорировать ильменитовый концентрат оказывается невозможным, из-за образования большого количества хлорного железа – соединение очень быстро разрушает оборудование. Поэтому без стадии предварительного удаления оксида железа обойтись нельзя. Хлорирование проводится в шахтных или солевых хлораторах. Процесс несколько отличается.

  • Шахтный хлоратор – футерованное цилиндрическое сооружение высотой до 10 м и диаметром до 2 м. Сверху в хлоратор укладывают брикеты из измельченного шлака, а через фурмы подают газ магниевых электролизеров, содержащий 65–70% хлора. Реакция между титановых шлаком и хлором происходит с выделением тепла, что обеспечивает требуемый для процесса температурный режим. Газообразный тетрахлорид титана отводят через верх, а остатки шлака непрерывно удаляют снизу.
  • Солевой хлоратор , камера, футерованная шамотом и наполовину заполненная электролитом магниевых электролизеров – отработанным. В расплаве содержаться хлориды металлов – натрия, калия, магния и кальция. В расплав сверху подают измельченный титановый шлак и кокс, снизу вдувают хлор. Поскольку реакция хлорирования экзотермична, температурный режим поддерживается самим процессом.

Тетрахлорид титана очищают, причем несколько раз. Газ может содержать углекислый газ, угарный газ, другие примеси, так что очистка производится в несколько этапов.

Отработанный электролит периодически заменяют.

Получение металла

Металл восстанавливают из тетрахлорида магнием или натрием. Восстановление происходит с выделением тепла, что позволяет проводить реакцию без дополнительного обогрева.

Для восстановления используют электрические печи сопротивления. Сначала в камеру помещают герметичную колбу из хромо- сплавов высотой в 2–3 м. После того как емкость прогреют до +750 С, в нее вводят магний. А затем подают тетрахлорид титана. Подача регулируется.

1 цикл восстановления длится 30–50 ч, чтобы температура не повышалась выше 800–900 С, реторту обдувают воздухом. В итоге получают от 1 до 4 тонн губчатой массы – металл осаждается в виде крошек, которые спекаются в пористую массу. Жидкий хлорид магния периодически сливают.

Пористая масса впитывает довольно много хлорида магния. Поэтому после восстановления осуществляют вакуумную отгонку. Для этого реторту прогревают до 1000 С, создают в ней вакуум и выдерживают 30–50 часов. За это время примеси испаряются.

Восстановление натрием протекает почти таким же образом. Разница наличествует только в последнем этапе. Чтобы удалить примеси хлорида натрия, титановую губку измельчают и выщелачивают из нее соль обычной водой.

Рафинирование

Полученный описанным выше образом технический титан вполне годится для производства оборудования и емкостей для химической промышленности. Однако для областей, где требуется высокая жаростойкость и однородность свойств, металл не годится. В этом случае прибегают к рафинированию.

Рафинирование производится в термостате, где поддерживается температура в 100–200 С. В камеру помещают реторту с титановой губкой, а затем с помощью специального устройства в закрытой камере разбивают капсулу с йодом. Йод реагирует с металлом, образуя йодид титана.

В реторте натянуты титановые проволоки, по которым пропускают электрический ток. Проволока раскаляется до 1300–1400 С, полученный йодид разлагается на проволоке, формируя кристаллы чистейшего титана. Йод освобождается, вступает в реакцию. С новой порцией титановой губки и процесс продолжается, пока не исчерпается металл. Получение останавливают, когда благодаря наращиванию титана диаметр проволоки становится равным 25–30 мм. В одном таком аппарате можно получить 10 кг металла с долей в 99,9–99,99%.

Если необходимо получить ковкий металл в слитках, поступают иначе. Для этого титановую губку переплавляют в вакуумной дуговой печи, поскольку металл при высокой температуре активно впитывает газы. Расходуемый электрод получают из титановых отходов и губки. Жидкий металл затвердевает в аппарате в кристаллизаторе, охлаждаемом водой.

Плавку, как правило, повторяют дважды, чтобы улучшить качество слитков.

Из-за особенностей вещества – реакции с кислородом, азотом и впитывание газов, получение всех титановых сплавов также возможно лишь в электрических дуговых вакуумных печах.

Про Россию и другие страны-производители титана читайте ниже.

Популярные изготовители

Рынок производства титана достаточно закрытый. Как правило, страны, производящие большое количество металла, сами же и являются его потребителями.

В России самой большой и едва ли не единственной компанией, занимающейся получением титана, является «ВСМПО-Ависма». Она считается крупнейшим изготовителем металла, но это не совсем верно. Компания производит пятую часть титана, однако мировое потребление его выглядит иначе: около 5% расходуется на изделия и приготовление сплавов, а 95% – на получение диоксида.

Итак, производство титана в мире по странам:

  • Ведущей страной-производителем является Китай. Страна обладает максимальными запасами титановых руд. Из 18 известных заводов по получению титановой губки 9 расположены в Китае.
  • Второе место занимает Япония. Интересно, что в стране на авиакосмический сектор уходит только 2–3% металла, а остальной используется в химической промышленности.
  • Третье место в мире по производству титана занимает Россия и ее многочисленные заводы. Затем следует Казахстан.
  • США – следующая в списке страна-производитель, расходует титан традиционным образом: 60–75% титана использует авиакосмическая промышленность.

Производство титана – процесс технологически сложный, дорогостоящий и длительный. Однако потребности в этом материале настолько велики, что прогнозируется изрядное увеличение выплавки металла.

О том, как происходит резка титана на одном из производств в России, расскажет это видео: