Бильярд Буркозел Домино

8 ферзей на шахматной доске решение. Задачу о N ферзях признали NP-полной задачей

КУРСОВАЯ РАБОТА

«Решение задачи о 8 ферзях»

Харьков 2007

Цель работы: разработать программу, которая бы наглядно продемонстрировала варианты размещения ферзей на шахматной доске, удовлетворяя правилам задачи.

Метод исследования: изучение литературы, составление и отладка программ на компьютере, проверка решений.

Программа размещения ферзей на практике может применяться в в образовательных целях. Также ее можно использовать для изучения математической модели поставленной задачи. Ведь задача особенно интересна, при увеличении размера шахматной доски.

Задача звучит следующим образом:

«Какими способами можно расставить на доске восемь ферзей так, чтобы они не угрожали друг другу, т.е. никакие два не стояли на одной вертикали, горизонтали и диагонали и сколько таких способов?»

Задача о восьми ферзях


Очевидно, больше восьми мирных ферзей (как и ладей) на обычной доске расставить невозможно. Найти какое-нибудь расположение восьми ферзей, не угрожающих друг другу, легко (на рисунке представлены четыре искомые расстановки). Значительно труднее подсчитать общее число расстановок и вывести их, в чем, собственно, и состоит задача.

Любопытно, что многие авторы ошибочно приписывали эту задачу и ее решение самому К. Гауссу. На самом деле, она была впервые поставлена в 1848 г. немецким шахматистом М. Беццелем. Доктор Ф. Наук нашел 60 решений и опубликовал их в газете «Illustrierte Zeitung» от 1 июня 1850 г. Лишь после этого Гаусс заинтересовался задачей и нашел 72 решения, которые он сообщил в письме к своему другу астроному Шумахеру от 2 сентября 1850 г. Полный же набор решений, состоящий из 92 позиций, получил все тот же Ф. Наук. Он привел их в упомянутой газете от 21 сентября 1850 г. Эта хронология установлена известным немецким исследователем математических развлечений В. Аренсом.

Строгое доказательство того, что 92 решения исчерпывают все возможности, было получено лишь в 1874 г. английским математиком Д. Глэшером (при помощи теории определителей). Забегая вперед, отметим, что существенных решений (не совпадающих при отражениях и поворотах доски) имеется только двенадцать.

Известно много способов организовать эффективный поиск расположения восьми мирных ферзей (методы Пермантье, Ла-Ное, Гюнтера, Глэшера, Лакьера и др.). Эти способы описаны в многочисленной литературе по занимательной математике. В наш век ЭВМ задача такого сорта не вызвала бы столь живой интерес. Ведь достаточно составить несложную программу, и уже через несколько минут после ее введения в машину все 92 необходимые позиции будут выданы на печать.

Из каждого решения задачи о ферзях можно получить ряд других при помощи поворотов (вращений) доски на 90, 180 и 270°, а также при ее зеркальном отражении относительно линий, разделяющих доску пополам. Например, из расстановки, показанной на рис. а, при повороте доски на 90° по часовой стрелке мы получаем расстановку на рис. в, а при отражении доски относительно линии, разделяющей королевский и ферзевый фланги, – на рис. г. При помощи других поворотов и отражений доски можно получить еще пять решений.

Итак, указанные операции с шахматной доской позволяют из одного расположения мирных ферзей получить, вообще говоря, семь новых. Доказано, что в общем случае на доске nхn (при n > 1) для любой расстановки n мирных ферзей возможны три ситуации:

1) при одном отражении доски возникает новая расстановка ферзей, а при поворотах и других отражениях новых решений не получается;

2) новое решение возникает при повороте доски на 90°, а ее отражения дают еще две расстановки;

3) три поворота доски и четыре отражения приводят к семи различным расстановкам (а если считать и исходную, то всего имеем восемь позиций).

В случае 1) исходное решение называется дважды симметрическим, в случае 2) – симметрическим, а в случае 3) – простым. Для обычной доски каждое решение является либо простым, либо симметрическим, а дважды симметрических не существует.

Набор расстановок восьми мирных ферзей называется основным, если, во-первых, эти расстановки не переходят друг в друга при поворотах и отражениях доски, и, во-вторых, любая другая расстановка получается из какой-нибудь основной при помощи данных преобразований доски. Доказано, что всякий основной набор решений задачи содержит ровно 12 расстановок. Вот один из таких наборов:

1) см. рис. а;

2) см. рис. б;

3) a4, b1, c5, d8, e6, f3, g7, h2;

4) a4, b2, c5, d8, e6, f1, g3, h7;

5) a4, b2, c7, d3, e6, f8, g1, h5;

6) a4, b2, c7, d3, e6, f8, g5, h1;

7) a3, b5, c2, d8, e6, f4, g7, h1;

8) a4, b1, c5, d8, e2, f7, g3, h6;

9) a4, b7, c3, d8, e2, f5, g1, h6;

10) a6, b4, c2, d8, e5, f7, g1, h3;

11) a4, b8, c1, d5, e7, f2, g6, h3;

12) a4, b2, c7, d5, e1, f8, g6, h3.

Остальные 80 расстановок получаются из этих двенадцати при помощи поворотов и отражений доски. Основная расстановка на рис. б является симметрической, другие одиннадцать основных расстановок – простыми. Итак, всего на доске имеем 11·8+1·4=92 расстановки восьми ферзей, не угрожающих друг другу.

Отметим несколько интересных свойств расстановок мирных ферзей. Симметрическая расстановка на рис. б как ей и положено, обладает внешней симметрией. Она характеризуется также тем, что центральная часть доски (квадрат 4х4) не занята ферзями. Свободны здесь и обе главные диагонали доски (этим свойством обладает и восьмая основная расстановка). В первой расстановке (рис. а) никакие три ферзя не находятся на одной прямой, проведенной через центры полей (имеются в виду не только вертикали, горизонтали и диагонали доски, но и прямые с другими углами наклона).

Всякое решение задачи о восьми ферзях можно записать как набор (t1, t2, ј, t8), представляющий собой перестановку чисел 1, 2, ј, 8. Здесь ti – номер горизонтали, на которой стоит ферзь i-й вертикали. Так как ферзи не стоят на одной горизонтали, то все числа ti различны, а поскольку ферзи не стоят и на одной диагонали, то для любых i, j (i < j Ј 8) имеем: |tj-ti| № j-i.

Запишем числа 1, 2, ј, 8 сначала по возрастанию, а затем по убыванию. После этого сложим числа каждой из этих двух перестановок с числами произвольной перестановки восьми чисел, например такой – (3, 7, 2, 8, 5, 1, 4, 6): 1, 2, 3, 4, 5, 6, 7, 8

3, 7, 2, 8, 5, 1, 4, 6

4,9, 8, 7, 6, 5, 4, 3, 2, 1

3, 7, 2, 8, 5, 1, 4, 6

11,14,8,13,9,4, 6, 7.

Полученные суммы образуют два набора: (4, 9, 5, 12, 10, 7, 11, 14) и (11, 14, 8, 13, 9, 4, 6, 7). Рассмотрим следующую задачу.

Какие перестановки чисел от 1 до 8 дают в результате указанной операции сложения два таких набора, в каждом из которых все элементы различны?

Задача о восьми ферзях привлекла внимание Гаусса именно в связи с этой чисто арифметической задачей. Оказывается, между решениями этих двух задач существует взаимно однозначное соответствие. Другими словами, каждая расстановка восьми ферзей, не угрожающих друг другу, дает решение арифметической задачи, и наоборот. Для выбранной перестановки оба набора состоят из различных чисел, и это не случайно – она соответствует первой основной расстановке (см. рис. а).

Нетрудно видеть, что при поворотах и отражениях доски одни решения получаются из других при помощи простых арифметических операций над координатами полей, занятых ферзями. Анализ этих операций позволяет обнаружить дополнительные свойства решений, которые мы не станем обсуждать.

Задача об n ферзях. На шахматной доске nхn расставить n ферзей так, чтобы они не угрожали друг другу.

На доске 1х1 один ферзь ставится на одно-единственное поле, и решение существует. На доске 2х2 один ферзь, где бы ни стоял, нападает на три других поля, и второго ферзя поставить некуда. На доске 3х3 умещаются только два мирных ферзя. Итак, для досок 2х2 и 3х3 задача не имеет решения. Эти два случая представляют собой исключение. Для всех n > 3 на доске nхn можно расставить n не угрожающих друг другу ферзей.

На доске 4ґ4 существует одна основная расстановка, причем дважды симметрическая: a2, b4, c1, d3, т.е. всего имеется два решения. На доске 5ґ5 основных расстановок две: 1) a2, b4, c1, d3, e5; 2) a2, b5, c3, d1, e4. Общее число расстановок равно десяти, причем из них можно выбрать пять таких, при наложении которых друг на друга 25 ферзей заполняют все поля доски 5х5.

Заметим, что в общем случае n расстановок (решений задачи) могут заполнить при наложении всю доску nхn только при тех n, которые не кратны двум и трем. Из этого, в частности, следует, что для обычной доски подобрать восемь расстановок, накрывающих все 64 поля доски, невозможно.

Обобщая алгебраическое свойство решений задачи о восьми ферзях, получаем, что расстановка n ферзей (t1, t2, ј, tn) на доске nґn является искомой, если для любых i, j (i < j Ј n) имеет место: |tj-ti| № j-i. Таким образом, задача об n ферзях сводится к чисто математической задаче о нахождении перестановки чисел 1, 2, ј, n, удовлетворяющей указанному условию. Известно много решений этой задачи, некоторые из них опубликованы в серьезных математических журналах. Один из методов расстановки n ферзей, не угрожающих друг другу на произвольной доске nґn (n і 5), можно найти в книге «Математика на шахматной доске».

Описание алгоритма и структуры программы:

В данной программе реализован рекурсивный метод решения задачи о 8 ферзях.

У нас имеется функция (int put_queen (int x)), которая ставит очередного ферзя на поле и вызывает саму себя для, того чтобы поставить следующего, если очередного ферзя поставить нельзя, то она возвращает управление в функцию, из которой была вызвана, а та в свою очередь пробует поставить своего ферзя в другое место, и опять рекурсивно вызвать себя. Когда функция ставит последнего ферзя, то результат расстановки выводится пользователю.

В самом начале мы вызываем функцию с параметром х равным нулю (нумерация начинается с 0), что означает, что она должна поставить первого ферзя. Когда эта функция возвращает управление главной функции, то это означает, что все варианты найдены.

Для сохранения положения ферзей используется массив из 8 элементов целочисленного типа (int queens). Порядок элемента в этом массиве означает номер ферзя и его x’овую координату, то есть столбец, а его значение – y’овую координату, или строку. Мы используем то свойство, что на одном столбце не могут находиться несколько ферзей.

Запустим поиск для доски с размерностью 4:

Solve(createEmptyBoard(4));

У меня возвращается вот такой массив:

Да, это решение. Попробуем поискать решение для доски с размерностью 2, функция должна вернуть false так как для этой доски нет решения:

Solve(createEmptyBoard(2)); // > false

Ага, программа работает как надо. А теперь давайте посмотрим на что способны наши железки и алгоритм. Соорудим небольшой тест производительности:

// Тест производительности, // @param {Natural} startSizeOfBoard Начальный размер доски // @param {Natural} endSizeOfBoard Конечный размер доски // @return {true} Тест закончился function benchmark(startSizeOfBoard, maxSizeOfBoard){ if(startSizeOfBoard>maxSizeOfBoard){ return true; }else{ console.log("Считаем для доски с размерностью:", startSizeOfBoard); var startTime = Date.now(); var solution = solve(createEmptyBoard(startSizeOfBoard)); var endTime = Date.now(); console.log("Решение:", solution.toString()); console.log("Затраченное время:", endTime - startTime, "миллисекунд"); return benchmark(startSizeOfBoard+1, maxSizeOfBoard); } }

В первый параметр этого теста надо передать интересующий начальный размер доски, во второй конечный размер доски. Тест поищет решение для досок размерность которых находится между переданным начальным размером и конечным. Начальный и конечный размер включены в этот интервал. Он так же посчитает время в миллисекундах, которое он затратил на этот поиск.

Вот мои результаты для досок от 1 до 9 на компьютере МакБук Эйр (1.8 гигагерц «Intel core i5», 4 гигабайта ОЗУ):

Benchmark(1,9);

Создавая такие тесты и строя графики на основе их данных мы можем узнать много интересного о задаче и алгоритме. Например, почему для поиска решения для доски с размерностью n=6 тратится 442 миллисекунды, а для доски с размерностью n=7 всего 5? Посмотрим на найденные решения:

Ага, решение доски с размерностью n=7 лежит прямо в первой ветке дерева, потому что ферзь стоит прямо в самой первой клетке. А вот с доской с размерность n=6 нам не повезло и алгоритму пришлось раскрывать больше ветвей дерева. Получается что с ростом размерности доски скорость поиска в нашем алгоритме не будет расти линейно, а что было бы если бы стояла задача найти все возможные решения? Подумайте над этим.

Так же в этих решениях содержится еще одна интересная закономерность: решение доски на 6 клеток как бы вложено в решение доски на 7 клеток. Иначе говоря если мы уберем первую строку и первый столбец из решения доски на 7 элементов мы получим решение для доски на 6 элементов. Забавно, я это заметил уже только когда делал визуализацию.

Заключение

Как мы видим по тестам производительности наш алгоритм не самый быстрый в мире и не позволяет получить ответ по щелчку пальцев. Но что у него не отнять так это то, что он отлично показывает силу деревьев и рекурсии.

С помощью деревьев мы организовали простую и эффективную структуру для хранения наших данных, а рекурсия помогла нам удобно организовать их обработку. Что мне нравится в этой парочке так это то, как одно очень красиво ложится на другое. Как будто это одно и тоже, просто представленное с другого ракурса.

А о методах ускорения поиска по деревьям поговорим в следующих статьях.

Одной из отличных задач-головоломок является 8 ферзей на шахматной доске . Эта игра была придумана еще в 1848 году известным шахматистом Базелем Максимом. Если вы хотите заняться саморазвитием и планируете начать с шахмат, то эта задача станет отличным стартом.

Смысл заключается в том, чтобы разместить 8 фигур, а точнее ферзей, так, чтобы ни одна из них не находилась под боем. Стоит напомнить, что ферзь может ходить в любом направлении и на любое количество клеток.

Варианты решения задачи

На сегодняшний день существует 12 решений, однако если применять правила симметрии, то насчитывается целых 92 варианта. Первое решение этой головоломки было опубликовано уже через два года Францом Наке. После него еще большое количество ученых и любителей пытались найти свое собственное решение как поставить 8 ферзей на шахматной доске . Например, всемирно известный математик и физик Гаусс нашел 72 варианта размещения фигур на шахматной доске. Такое количество вариантов было обусловлено интересным подходом – ученый разворачивал доску поочередно на 90, потом на 180 и на 270 градусов. Таким образом, получая новые комбинации.

Расставить 8 ферзей на шахматной доске непросто, однако каждый сможет найти хотя бы одно верное решение практически сразу. Одним из наиболее известных решений является такое расположение фигур:h5, f1,d8,b4,g7,e3,c6,a2. Еще три варианта решения можно наблюдать, если развернуть шахматную доску, подобно решению Гаусса.

В ходе поиска решения этой головоломки вы сможете попрактиковаться в творческом мышлении, потренируете внимание и память, а также разовьете способность логического мышления. Эти навыки пригодятся и помогут в дальнейшем находить нетривиальные решения поставленных задач, не используя стандартные алгоритмы. Применение в поиске решения размышлений и характерных логических конструкций может стать вашей отличительной чертой именно благодаря решению таких головоломок.

Пару месяцев назад появилась с анализом классической задачи о расстановке ферзей на шахматной доске (см. детали и историю ниже). Задача невероятно известная и вся уже рассмотрена под микроскопом, поэтому было удивительно, что появилось что-то действительно новое.





(здесь максимальное число ферзей, причем на месте крестика можно поставить белого, а на месте точке черного - но не обоих сразу; взято из статьи)

Модели и сложность задач

Пришло время собственно обсудить: а как это вообще все решать и насколько быстро это вообще можно сделать?

Линейный поиск для классической задачи

Самый интересный момент, что даже специалисты иногда путаются и думают, что для решения N-ферзей нужен комбинаторный поиск и думают, что сложность задачи выше P. Про то, что такое P и NP, когда-то уже писал на Хабре: и . Однако, задача решается без перебора вариантов! Т.е., для доски любого размера можно всегда расставить ферзей один за одним лесенкой:





Отсюда вывод, для N = 1 и N > 3 решение всегда есть (см. алго), а для N = 2 или N = 3
всегда нет (тривиально следует из доски). Это значит, что задача разрешимости для N ферзей (где нужно сказать есть решение или нет) решается тривиально за константное время (ну ок, конструктивно за линейное - расставить/проверить).


Самое время перепроверить прочитанное, читаем типичный заголовок "задачу о N ферзях признали NP-полной задачей" - у вас замироточили глаза?

Как считать число решений на практике

Вот тут начинается самое интересное: у количества решений задачи о расстановке ферзей даже есть своё имя - "последовательность A000170 ". На этом хорошие новости заканчиваются. Сложность задачи: выше NP и P#, на практике это означает, что оптимальное решение - это скачать данные последовательности в словарь и возвращать нужное число. Так как для N=27 оно уже считалось на параллельном кластере сколько там недель.


Решение : выписываем табличку и по n, возвращаем а(n)
n a(n)
1: 1
2: 0
3: 0
4: 2
5: 10
6: 4
7: 40
8: 92
9: 352
10: 724

21: 314666222712
22: 2691008701644
23: 24233937684440
24: 227514171973736
25: 2207893435808352
26 22317699616364044
27: 234907967154122528


Однако, если у вас какая-то хитрая разновидность задачи и все-таки нужно посчитать решения (а их количество неизвестно и раньше их никто не посчитал), то лучший вариант прототипа обсуждается чуть ниже.

Дополнение до N и Answer Set Programming

Тут начинается самое интересное: в чём же состоит новый результат статьи? Задача о дополнении до N ферзей - NP-полна ! (Интересно, что про NP-полноту дополнения латинского квадрата было известно ещё в 1984-ом году.)


Что это означает на практике? Самый простой способ решишь эту задачу (или вдруг, если нам нужно её вариацию) - использовать SAT. Однако, мне больше нравится следующая аналогия:


SAT - это ассемблер для комбинаторных NP-задач, а Answer Set Programming (ASP) - это С++ (у ASP тоже загадочная русская душа: он временами запутан и непредсказуем для непосвященных; кстати, теория, лежащая в основе современного ASP , была придумана в 1988ом году Михаилом Гельфондом и Владимиром Лифшицем, работавших тогда в университетах Техаса и Стэнфорда соответственно).


Если говорить упрощенно: ASP - это декларативный язык программирования ограничений (constraints в англоязычной литературе) с синтаксисом Prolog. То есть мы записываем, каким ограничениям должно удовлетворять решение, а система сводит всё к варианту SAT и находит нам решение.


Детали решения здесь не столь важны, и Answer Set Programming достоин отдельного поста (который лежит у меня в черновике уже неприлично долго): поэтому разберем концептуальные моменты


% domain row(1..n). column(1..n). % alldifferent 1 { queen(X,Y) : column(Y) } 1:- row(X). 1 { queen(X,Y) : row(X) } 1:- column(Y). % remove conflicting answers:- queen(X1,Y1), queen(X2,Y2), X1 < X2, Y1 == Y2. :- queen(X1,Y1), queen(X2,Y2), X1 < X2, Y1 + X1 == Y2 + X2. :- queen(X1,Y1), queen(X2,Y2), X1 < X2, Y1 - X1 == Y2 - X2.

Строка 1 { queen(X,Y) : column(Y) } 1:- row(X). - называется choice rule, и она определяет, что является допустимым пространством поиска.


Последние три строки называются integrity constraints: и они определяют каким ограничениям должно удовлетворять решение: не может быть ферзя в одном и том же ряду, не может быть ферзя в одной и той же колонке (опущено, в силу симметрии) и не может быть ферзя на одной и той же диагонали.


В качестве системы для экспериментов рекомендую Clingo .
И для начала стоит посмотреть их tutorial и попочитать блог на www.hakank.org .


Безусловно, если впервые писать на ASP, то первая модель не выйдет невероятно эффективной и быстрой, но скорее всего будет быстрее перебора с возвратом, написанным на скорую руку. Однако, если понять основные принципы работы системы, ASP может стать "regexp для NP-полных задач".


Проведем простой численный эксперимент с нашей ASP моделью. Я добавил 5 коварных ферзей в модель и запустил поиск решения для N от 1 до 150 и вот, что вышло (запущено на обычном домашнем ноутбуке):



Итого, наша ASP модель примерно в течении минуты может найти решения задачи о дополнении при N <= 150 (в обычном случае). Это показывает, что система отлично подходит для прототипирования моделей сложных комбинаторных задач.

Выводы

  • Новый результат связан не с классической задачей о 8 ферзях, а дополнении обобщенной задачи о ферзях (что интересно, но в целом закономерно);
  • Сложность существенно возрастает, так как, коварно поставив ферзей на доске, можно сбить алгоритм, ставящий ферзей по какой-то фиксированной закономерности;
  • Эффективно посчитать число решений нельзя (ну совсем; пока не случится какой-то ужас и P не сравняется с NP итд);
  • Возможно этот результат повлияет на работу современных SAT систем, так как некоторые эксперты считают, что эта задача в чем-то проще классических NP-полных задач (но это только мнение)
  • Если вам вдруг зачем-то нужно решать подобную задачу - лучше всего воспользуйтесь системами аля Answer Set Programming, специально для этого предназначенных